
INTEGRAlL METHODS FOR THE CALCULATION OF 
GAS FLOWS WITH STRONG SHOCK WAVES 

(METOD INTEGRAL'NYKH SOOTNOSHENII DLIA RASCAETA 

TECHENII GAZA S SIL'NYMI UDARNYMI VOLNAMI) 

PMM vo1.25, No.1, 1961, PP. 101-107 

G. G. CHERNY I 

(Moscow) 

(Received November 18, 1960) 

When a strong shock wave propagates through a gas the density of the gas 

increases significantly. The region of disturbed motion next to the wave 

may be considered as a peculiar boundary layer, which is in many ways 

analogous to the boundary layer in a viscous fluid*. In the calculations 

of gas motion in this layer behind the shock wave integral methods may be 

used, which are basically similar to those used in the theory of bound- 

ary layers in a viscous fluid. The integral relationships in various 

special cases have already been used by the author in the solutions of 

problems of flows with strong shock waves [ 1,2 I. Below is given , in 

brief, a general approach to the use of integral methods in such prob- 

lems together with new examples of solutions. 

1. We shall consider gas flows with plane, cylindrical and spherical 
waves arising from the propagation of a shock wave into a stagnant gas. 

J_et a gas be confined in some volume V between a shock wave and some 

surface located inside the region of motion and composed of the same gas 

particles (this surface will be referred to as the piston surface). To 

this gas we shall apply the laws of conservation of mass, momentum and 

energy. We shall denote by M, K and E the mass, momentum (more precisely 

the integral of moduli of elementary momenta) and the energy of the gas, 

respectively, in the volume under consideration. Let us assume 

ill = \ pav, K = \ pvdV, 
L i 

E+($-e)dV 
V 

(1.1) 

* G.G. Chernyi. Boundary- layer nethod in problems of ideal and viscous 

gas motions with a surface discontinuity Dissertation, Moscow State 

University, 1956. 
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'Ihen from the laws of observation we obtain 

l@= p”iz”S” or &I = p”V” + const 

ic = p,Se - p”S” + \ pdS 

S* 

(1.2) 

(1.3) 

k = pO&l)-tOi?O _t p,iz,s, (1.4) 

where p is the density, v is the velocity, p is the pressure, e is the 
internal energy of a gas per unit mass, (for an ideal gas e = p/(y - 1) 
where y is the ratio of specific heats), R and S denote the radius and 
the area of the surfaces bounding the chosen volt of gas, and Ir is the 
volume inside the surface S. Here the superscript ’ denotes the shock 
wave and the gas parameters in front of it, the subscript asterisk de- 
notes the second bounding surface and the gas parameters on it, and*primes 
denote differentiation with respect to time t. 

If we approximate the distribution of gas parameters along the radius 
or along the Iagrangian coordinate by some functions which contain these 
parameters, then the dependence of these parameters on time may be found 
by using Equations (1.2) to (1.4), and some additional conditions, in a 
manner similar to the integral method of boundary-layer theory. In par- 
ticular, the differential equations of motion in their various approxi- 
mate forms may serve as additional conditions. Naturally, if a sufficient 
number of other conditions is available it is not necessary to satisfy 
all the integral relationships (1.2) to (1.4); one or even two of them 
may not be satisfied, 

\Ve shall investigate some variants of the use of integral relation- 
ships. 

2. First we shall make the simplest assumption, namely, that the 
pressure and the velocity are the same for all gas particles between the 
shock wave and the piston, i.e. they depend only on time. For definite- 
ness we shall further assume that the gas is ideal with constant specific 
heats. The equations of conservation of ~ment~ and 
written in the form 

M2; + 1tiV = (p - p”) S” 

P TO-- V*) = _$,feo ( * 

T-1 1 -I- PY* 

where the quantity M is determined by Formula (1.2). 

Two equations, (2.1) and (2.2), connect the three 

of energy may be 

(2.l) 

(2.2) 

functions of time p, 
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v and V” for the known piston expansion V*(t). To determine these func- 

tions another relation between them is necessary. In [2 I this addition- 

al relation was derived from the assumption that in this form of the in- 

tegral method the gas velocity v is equal to the velocity of the gas 

immediately behind the shock wave, 

which in turn is determined by the 
X relationships at the shock (or even 

by assuming that the velocity v be 

equal to the velocity of shock-wave 

propagation). On this assumption so- 

lutions were presented in [2 1 for 
the problem of a point explosion 

followed by piston expansion at con- 

stant velocity for the cases of plane 

and cylindrical waves, and for the 

Fig. 1. 
approximately equivalent problems of 

the flow of a jet of large supersonic 

velocity past a thin blunt wedge and a thin blunt cone. Jet us compare 

the exact solution for a piston expanding according to a power law and 

the solution obtained by using this method for p” = 0 and y = 1.4. Figure 
1 shows in dashed lines the approximate values of ratios of the piston 

volume to the volume bounded by the shock wave and the ratios of the 

pressure on the piston to the pressure behind the shock wave p*, corre- 

sponding to formulas 

V (I+~)(*+$ ) * - 
T’” 

&=I+- ’ 2/L 

(li-;)!r+6) ’ p* 2 c 9 == Y (n + I), J 

where v = 1, 2, 3 refer to flows with plane, cylindrical and spherical 

waves, respectively, n is the exponent in the expansion law of the piston 

R -t nf ‘. Exact values were obtained from various sources, cited 

ii [2 1. 

Taking into account the simplicity of this approximate solution, its 

accuracy in the case under consideration may be considered to be satis- 

factory. A satisfactory accuracy is reached also in the solution by this 

method for the problem of the piston expanding with constant velocity 

(n = 0) for various values of the ratio of the sound velocity in a stag- 

nant gas to the piston velocity. 

3. Use of the "automodel" solutions [i.e. solutions based upon 
similarity relations 1. Additional relations between the quantities which 
enter into the relationships (1.2) to (1.4) may be used, namely, those 

which exist between these quantities within the region of validity of 

similarity relations, which arise if the piston expands into a gas at rest 
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with zero initial pressure according to the power law R - t”+l. 
* 

We may, for example, assume that the volume distribution of the gas 

parameters in the region between the shock wave and the piston is deter- 

mined by equations of the form 

p = p’Q 
‘(I -h,)V+h,v"-v* 
i V” - v, ) (3.1) 

where the asterisk * denotes the parameters of the gas immediately be- 

hind the shock wave, CI(h ) is the function taken from the similarity 

solution, where X = V/P. This function, as well as the quantity Xm 

(least value of X), is a known function also on the exponent n in the 

law of piston expansion (and also on v and y). Using the assumed dis- 

tributions we obtain 

:I1 = p* (P - V*)/.L((n), K = MZ'*1C(n), E = Mv'*& (72) 
S” 

P, = eo*, 
s 

pdS = p* (S” - S*) ci (n) 

S* 

where p, K, E, IT and (T are known functions of n. The substitution of 

these expressions in Equations (1.2) to (1.4) yields, for the known law 

of piston expansion R*(t), three relations between the quantities R”, n, 

P*1 v* and p* by which their dependence on time t is defined, 

Two missing relationships may be taken from the three conditions at 

the shock wave, which connect. p*, v*, p* and R”. On the other hand we 

may use all three conditions at the shock wave. Then one of the three 

integral relationships (1.2) to (1.4) remains unsatisfied. 

The method just described is analogous to the method of Kotchin and 

Loitsianski for the use of similarity solutions in the theory of bound- 

ary layers in a viscous fluid. However, it requires quite cumbersome com- 

putations, and is therefore replaced by a simpler method described in 

the next. section. 

4. Shock-layer method. As is known [l I, the calculation of the 
gas motion behind strong shock waves may be carried through by means of 

representation of the solution in terms of Iagrangian variables in the 

form of power series in the parameter E, which characterizes the ratio 

of densities of a gas in front and behind the wave. All the terms of 

these series are found from the equations by means of quadratures which 

contain the law of shock-wave propagation R”(t). For the determination 

of the function R’(t) the law of energy conservation (1.4) may be used. 

Here the function R”(t) must be represented also in the form of a series 

in E. When substituting the series for R (R being an Eulerian coordinate), 

p and p in Equation (1.4) and, after a suitable transformation, equating 
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the terms of the same power of t on both sides of the equation, we ob- 

tain ordinary differential equations for the determination of the terms 

of the series for R'(t). 'Ihis method may be made to assume the form of 

integral relationships, as was done in I_2 I, if the approximate velocity 

and pressure distributions are used in the leading terms of the corre- 

sponding series in 6, if all the boundary conditions are satisfied, and 

if the function R”(t) which appears therein is determined from the in- 

tegral energy relationship (1.4). 

Following [Z ] we substitute the following approximate expressions of 

velocity and pressure: 

2 . 

v=y+l ---p&g) + 0 (6) 
(4.1) 

p=p”+ & pQ (&? __ p) + PO !cp _ j$& m -I- 0 (4 

(a" is the sound velocity in the gas at rest, m is the Iagrangian co- 

ordinate proportional to the mass of a gas, contained inside the surface 

under consideration) in the integral energy relationship, disregarding 

in the formula for E the term 

- 

which is of the order 6. As a result we obtain the following equations 

for the determination of the function R": 

where 

3 pRk 
P,=pO+ ;,P”(A”-aa”y+ y 

For simplicity it is assumed that initially the gas occupies all 

space. 

In [2 I Equation (4.2) has been used to solve the problems of a piston 
moving at constant velocity (in this problem the solution coincides with 
the one obtained according to Section 2 of the present Paper), of a 
piston moving according to a power law into a gas with zero initial 
pressure (see solid curves in Fig. I), and of a strong explosion. Xn all 
these problems the approximate solutions come out in an elementary form 
and their coincidence with the exact solutions turns out to be quite 
satisfactory up to values c = 0.2 - 0.3. 
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We shall present the solution of the problem of the explosion when the 
initial pressure is taken into account. 

The basic equation (4.2) may be in this case integrated once, and 
thereupon it assumes the form 

where E is the energy of explosion (I is the energy, per unit area and 
per unit length of charge, respectively, for v = 1 and v = 2). w = 2, 
n, 4/3 n for v = 1, 2, 3 respectively. When using the substitutions 

this equation and the expressions for p are reduced to the following: * 

P. - PO r - 1 2T (T - 1) (1 - d2 
O=-- (r+l)S q P V 

It is interesting to note that the system of relationships obtained 
does not contain V, that is, it has the same form for the explosions of 
plane, linear and point charges. Consequently, the volume dependence of 
the propagation velocity of a shock wave (and, consequently, of all the 
gas parameters behind it) and of the pressure at the center of the ex- 
plosion is the same for all three cases. The initial condition q = 0. 
v = 0 for the solution of Equation (4.3) corresponds to a singular Point 
of this equation. In the neighborhood of this singularity the required 
solution has the following asymptotic form: 

2 (T - 1) tr + 1)” 
‘= T(6T-Tz--1) q’ 

P. - i P” _ 2T2 - T3 + 37 
P” 2 tf+ IT 7 

These first terms of asymptotic expansions approximately describe a 
strong explosion (without taking into account the initial gas pressure) 
and satisfactorily agree with the exact relations 12 I up to the values 
E = 0.2- 0.3. The dot-dash curve 3 in the Fig. 2 was obtained by 
numerical integration* of Equation (4.3), namely, of the function Q from 

l The calculations were carried through by G. Orlova and R. Burmistrova. 
The variable 1 was introduced for convenience of comparison with al- 
ready existing exact solution for v = 3. 
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The dashed line 2 in this figure shows the results of the solution of 

the linearized problem of an explosion when the initial gas pressure is 

taken into account. The solid line 1 04 
shows the values found for the com- 

plete numerical solution of the prob- 04 

lem of a point explosion [3 I, line 

4 shows the corresponding similarity 03 

solution. Unfortunately, data on the 

complete solution of the problem of O2 

the explosion of linear and plane 

charges does not exist to date. 01 

Figure 2 is evidence of the fact that 

the approximate solution of the prob- G 

lem of the explosion using the inte- 

gral method is approximately of the Fig. 2. 

same accuracy as the solution of the linearized problem, but differs from 

the latter by its simplicity. 

Also, the solutions presented for the problems of the piston and of 

the explosion lead to the conclusion that in these problems there is an 

approximate equivalence of motions of plane, cylindrical and spherical 

waves. When the law of plane cross-sections of supersonic aerodynamics 

is used it leads then to the equivalence of corresponding problems on 

streamlining of profiles and bodies of revolution (also slightly blunt 

bodies). 

Next, we shall give a more complete example in which the integral 

method may be used. 

We shall investigate the particular problem of a nonstationary super- 

sonic source in a compressible gas, which arises in the study of shock 

tubes with an expanding nozzle. 

An exact solution is known of the equations of steady motion of a 

compressible gas, in which the gas particles move along the rays origin- 

ating at a singular point, and the values of all the gas parameters are 

the same on any concentric sphere about this point which is the source 

in the compressible gas. In the case of adiabatic motions of an ideal 

gas the solution may not be continued into the very center as it exists 

only outside the sphere of “critical” radius r , where the gas velocity 

v at any point of this sphere, which is called nucleus of the source, 

eiuals the sound velocity. If the pressure and the density (or the tempe- 

rature) of the gas on the surface of a source nucleus are given and equal 

P and p , then there exist two continuous flows extending to infinity. 

1r*1 one o? them the gas velocity decreases with the distance from the 

center to become zero at infinity; pressure and density on the other hand 
increase from 
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Y I 

F* and p1 (case of a sub- 
sonic source) 

In the other flow the gas velocity increases with the distance from 
the nucleus 

If 
-- 

from 21 to r+l2)* (case of a sub- 

7-i sonic source) 

at infinity, while pressure and density here correspondingly decrease to 
zero. This is the case of a supersonic source. A cylindrical source in a 
compressible gas may be treated in the same way. The two solutions here 
exist outside the nucleus, the shape of which is a circular cylinder. 

If the pressure p ’ is greater than zero at infinity, but less that pT, 

then a continuous flow is not possible and a shock wave arises in the 
stream. The flow here consists of a region of supersonic source flow ad- 
joining the nucleus source, which by discontinuous change in the shock 
wave at a certain r - r* is converted into a region of subsonic source 
flow. The latter extends to infinity. With increase of pressure p” from 
zero the shock wave moves from infinity to the nucleus; when the shock 
wave approaches the nucleus its intensity decreases until at p” = pT the 
shock wave becomes infinitely weak and coincides with the surface of the 
nut leus, while the flow everywhere becomes subsonic. 

Let us consider now a tube consisting of cylindrical and conical 
portions, 

Let the conical portion of the tube be filled with a homogeneous gas 
at rest, and let the parameters in the cylindrical section initially be 
such that subsequently the gas starts to flow from it at supersonic velo- 
city into the conical section. The calculations of the motion generated 
under these conditions may approximately be reduced to a special case of 
the following problem of a nonsteady source. 

Initially let the gas be at rest outside the sphere of radius rO and 
let its pressure be p” and its density p”. Inside the sphere between r,, 
and r. < rO initially the gas moves according to the law corresponding 
to the supersonic source. Its stagnation pressure and density equal pT 

and PT. bet us investigate the motion which arises from such an arbitrary 
discontinuity, under the condition that on the surface r = r the velo- 
city v et pressure p* and density p remain constant. The inv&tfgation 
will be confined to the cases of ti;ose values of the characteristic para- 

meters P’IPT, PO/p, (or T”/TT), rO/r, (or Me), y and y” for which the 
shock wave propagates in both directions from the contact discontinuity, 
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and for which the asymptotically established discontinuity occurs at 
rju > ro. 

In formulating the equations which approximately describe the motion 
of the gas we shall apply the integral relationships. 

As before let M, K and E denote respectively the mass, momentum and 
energy of a gas confined between the contact surface of the discontinuity 
and one of the shock waves. The equations of mass conservation in the 
region outside the contact surface (index n~lus”) and inside of it (index 
“minus”) have the form 

dM_ 
- = b. (v* - Ei,) s* dt 

or following integration 

M, = p0 (VO - V-00) ( 
T’O 

M_=qt- 
s PO 09 dv (4.4) 

VW 

where q is the strength of the source, the indices lCdouble zero” and 
*zero” denote, respectively, the values of the gas parameters in front of 
the shock waves, propagating to the outside and to the inside (following 
the particles). The quantities with index “double zero” are known con- 
stants, the quantities with index *meroD are known functions of R, (super- 
sonic source ), Voo is the volume inside the initial discontinuity. 

The momentum equations have the form 

so S 
a’K+ _ 

dt 
p,S, - p”S” + ( pdS dK_ dt = PO& -I- POVO (vo - go) So -- P,S* f \;‘pdS (4.5) 

S* F 8~ II 

From the law of energy conservation we obtain 

d& x = pOjjoSQeO + p* ti, s, . 
dE_ 
dt = pi&l (Vo - @.f$ 

We shall apply the law of integral relationships in its simplest form. 
We assume that p1 = p2 = p*(t), v1 = v2 = h (t). When using the integrals 
(4.4) Equations (4.5) to (4.6) thereupon astume the form 

p0 (VO -Voo) R, + pOsOriOn^, = (p, - p”) S” 

V, 

(@ - s POW ii, + POX0 (VII -ho)@* --o)=(P*--P*)SO 
V., 
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VO 

(qt - s Pm kk + 
v -vo . 
* p, = (q -P&da) v2 - R*2 

V,* 
2 

+ _L 
r -1 

POVOSO - 

- I& P*SA + - p*soko (4.7) 

The four equations (4.7) contain an equal number of unknown functions 

Ru, R., RO, p*. The initial conditions for the solution of system (4.7) 

have the following form: 

R. = R, = R” = ro, P. =P for t =O 

where p is determined from the solution of the system of the following 
algebraic equations, which are obtained if in Equations (4.7) we assume . 
R =p =O, S- 

9(O) =’ D+ : 
1, and introduce notations i,(O) = D_, R*(O) = II, 

PO (vo - D_) (U - 00) = p. - p 

pu + P- PO 
-D_=O 
r-1 

The system of equations (4.7) may be integrated numerically for any 
set of determining parameters for which the accepted scheme 

takes place (i.e. for which D_ > 0). 

of the flow 
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